GENERAL DYNAMICS

Mission Systems

Smallsat/Cubesat – Ground Communication Methods and Limitations

Jim Startup

Satellite Missions

- Few in Numbers
- Large and Heavy
- Larger Apertures
- Long Development Time

LEO

- Many for Global Coverage
- Smaller and Lighter
- Smaller Apertures
- Long Development Time

Virtually All Missions Require Ability for Ground Systems To Communicate With On-Orbit Satellites

GENERAL DYNAMICS

Satellite Missions

GENERAL DYNAMICS

Communication Systems

Satellite System	Description	Development Time	Cost	Satellite Weight	Satellites in Constellation	Total Throw	
MUOS	 GEO Large and Heavy Large Aperture (46 ft) High Cost Failure Immediately and Significantly Impacts Coverage 	10 yrs	\$7B	6800 lbs	4	27,200 lbs (to GEO)	
Iridium	LEOSmaller/Lighter	7 yrs	\$5B	1513 lbs	66	99,858 lbs (to LEO)	
	 Smaller Aperture (188 x 66 cm) Lower Cost Failure Less Catastrophic 				ht/Power/C า™ to Small	ost	
			Class of Satellites				

GENERAL DYNAMICS

Proposed Approach

- System Composed of Three Nodes (Satellite, Ground Station and User Terminal)
 - Loosely Organized LEO Fleet With Less Rigid Geometry and Needing Very Little Active Control
- Interconnected Via Inter-Node Links to Form an Ad Hoc Mesh Network
 - Act Autonomously as Cooperative Agents to Manage Network and Efficiently Move Data From Node-to-Node
 - Requires Minimal Central Control
 - Cost Effective
 - Maintains Network Connectivity
 - All Nodes Use Autonomous Scanning/Discovery/Ad Hoc Networking Methods to Locate Peers, Negotiate Layer-1 Links and Update/Repair Network
 - All Nodes Use Software Defined Radio Technology
 - Enables Diversity Techniques

- Satellites
 - Spherical
 - Half of the surface covered by solar arrays/half covered by multi-band antennas
 - Communication links can be formed in any direction
 - Solar pointing is not an issue
 - Performance analysis is simplified
 - Autonomously Seek and Connect With Peer Nodes
 - New Nodes Automatically Assimilated Without Disruption
 - Failing Nodes are Eliminated but Mesh Remains Viable
 - Antenna Elements Combined to Form Beams in the Direction of a Partner Node
 - Satellites Provide Ground Coverage Such That Any Point on the Ground is Covered by More Than 3 Satellites at Any Time
 - Enables Diversity
 - Failure of any satellite is automatically accommodated by nearby satellites with no disruption of service

Proposed Approach

- Ground Station Nodes
 - Semispherical Phased Arrays Configured to Form Beams in Any Direction
 - Act as Routing/Switching Points in the Greater Mesh
 - Architecture Accommodates multiple Ground Station Nodes With Direct Space-Ground Links to the On-Orbit Mesh
 - Can Maintain Links With Multiple Satellites
 - Potentially Supports Multiple Missions
 - Separated by at Least 50 km to Maximize Diversity Gains
 - Employs Diversity Techniques (Large Scale Site Diversity for Instance)
 - Significantly Smaller Than Dish Antennas, Which Cannot Employ Diversity
 - Mitigates Rain and Scintillation Fades
 - Placed Strategically to Provide Coverage, Capacity and Availability

User Terminals

- Small, Battery Operated
- Fixed, Nomadic or Mobile
- Links Established By User Terminals, Which Scan For Satellites
 - Beacon Channels From the Satellite Provide User Terminals With Access Method Information
- Multi-Antenna Techniques Employed
- Dynamic Frequency Re-Use Patterns
 - Satellites Distribute Re-Use Patterns Depending on User Distribution
- Employs Cooperative Communication
 - Non-Collocated Terminals Employ Other Available "Team" Nodes to Cooperatively Transmit Information Messages Using MIMO and Space-Time Encoding Techniques

Performance

Link Performance vs. Satellite Size and Mass

Satellite Diameter (m)	Available TX Power (W)	Satellite Mass (kg)	Satellite Weight (lb)	Aperture Gain (dB)	Satellite Type
0.10	1.8	0.1	0.2	-1.4	Picosatellite
0.21	8.2	1.0	2.2	5.2	0.1 to 1.0 kg
0.22	8.6	1.1	2.4	5.5	Nanosatellite
0.30	16.1	2.8	6.1	8.2	1.0 to 10.0 kg
0.46	38.0	10.0	22.0	11.9	210 to 2010 Ng
0.47	39.5	10.6	23.3	12.1	
0.59	61.5	20.6	45.3	14.0	Microsatellite
0.69	84.2	33.0	72.6	15.4	10.0 to 100.0 kg
0.79	110.5	49.6	109.2	16.5	10.0 to 100.0 kg
0.99	176.4	100.0	220.0	18.6	
1.00	178.7	101.9	224.3	18.6	
1.10	216.2	135.7	298.5	19.5	Minisatellite
1.25	279.2	199.1	438.0	20.6	100.0 to 500.0 kg
1.40	350.2	279.7	615.4	21.6	100.0 to 300.0 kg
1.70	515.7	500.0	1100.0	23.2	

GENERAL DYNAMICS

Performance

Size and Mass Improvements

- Assume User Downlink Limited
- Start With a Spherical Satellite With Roughly the Same Performance as Iridium

Satellite	Main Mission		Transmit Power
System	Antenna Gain	Weight	Available
Iridium	~ 24 dB	1513 lbs	~ 600 watts
SmallSat	24 dB	1431 lbs	615 watts
Equivalent			

Increase Number of Satellites to Achieve Capacity

GENERAL DYNAMICS
Mission Systems

Performance

Size and Mass Improvements

	Total System Throw Weight (lbs)	
•••••	Number of Satellites in the System	

	Link	Number of		Total System	
Imp	provement	Satellites in the	Satellite Mass	Throw Weight	
	(dB)	System	(lbs)	(lbs)	Satellite Type
	11.93	1028.2	23.3	23941.9	
	10.00	660.0	45.3	29883.0	Microsatellite
	8.63	481.8	72.6	34977.0	10.0 to 100.0 kg
	7.45	367.1	109.2	40071.0	10.0 to 100.0 kg
	5.42	230.1	220.0	50614.0	
	5.37	227.1	224.3	50940.2	
	4.94	206.0	259.6	53487.2	Minisatellite
	4.54	187.7	298.5	56034.2	100.0 to 500.0 kg
	3.78	157.7	387.6	61128.2	

System Comparison

		Satellite	Satellites in	
	Cost	Mass (wet)	Constellation	Total Throw
MUOS	\$7B	6800 lbs	4	27,200 lbs
				(to GEO)
Iridium	\$5B	1513 lbs	66	99,858 lbs
SmallSat	Lower	45.3 lbs	660	29,883 lbs

Proposed System

- Ad Hoc, Mesh Network Employing Node Intelligence and Inter-Node Cross-Links
- Employing Multi-Antenna Techniques
- Less Costly
 - Launch Costs Significantly Reduced
 - Operational Costs Reduced
- Ground Stations Can Be Shared Between Missions/Systems
 - Spreads Costs Among Many Different Systems
- More Robust
 - Failures Gradually Degrade the System
 - Replacement Satellites are Easier and Cheaper to Launch
 - Redundancy Systems No Longer Needed (Further Reducing Mass)

GENERAL DYNAMICS